Для моих учеников


Проверьте, как вы усвоили свойства логарифмической функции.
логарифмическая функция

Применение логарифмов для познания окружающего мира 

Если в 16 веке логарифмы появились как средство для упрощения вычислений, то нужны ли они сегодня, когда вычислительная техника достаточно развита, чтобы справляться с самыми сложными расчетами?
Вопрос правомерен. Ведь не изучают же в современной школе такие старые средства для упрощения вычислений, как простейшие счетные приборы, не  изучаются древние алгоритмы умножения и деления чисел, извлечения квадратных и кубических корней и пр. Так зачем изучают логарифмы сегодня? Попробуем ответить на этот интересный вопрос.
Во-первых, логарифмы и сегодня позволяют упрощать вычисления.
Во-вторых, испокон веков целью математической науки было помочь людям узнать больше об окружающем мире, познать его закономерности и  тайны.
Ряд явлений природы помогает описать  логарифмическая зависимость. Иначе говоря, математики, пытаясь составить математическую модель того или иного явления, достаточно часто обращаются именно к логарифмической функции.
Одним из наиболее наглядных примеров такого обращения является логарифмическая спираль. Спираль в одну сторону развертывается до бесконечности, а вокруг полюса, напротив, закручивается, стремясь к нему, но не достигая (приложение 3).
Так почему мы в качестве примера логарифмической зависимости в природе выбрали именно логарифмическую спираль?
Известно, что живые существа обычно растут, сохраняя общее начертание своей формы. При этом чаще всего они растут во всех направлениях – взрослое существо и выше и толще детеныша. Но раковины морских животных могут расти лишь в одном направлении. Чтобы не слишком вытягиваться в длину, им приходится скручиваться, причем рост совершается так, что сохраняется подобие раковины с её первоначальной формой. А такой рост может совершаться лишь по логарифмической спирали или её некоторым пространственным аналогам. Поэтому раковины многих моллюсков, улиток, а также рога таких млекопитающих, как горные козлы
( архары), закручены по логарифмической спирали (приложение 3).
Можно сказать, что эта спираль является математическим символом соотношения формы и роста. Великий немецкий поэт Иоганн-Вольфганг Гёте считал её даже математическим символом жизни и духовного развития.
По логарифмической спирали очерчены не только раковины. Один из наиболее распространенных пауков, эпейра, сплетая паутину, закручивает нити вокруг центра по логарифмическим спиралям. В подсолнухе семечки расположены по дугам, близким к логарифмической спирали. По логарифмическим спиралям закручены и многие Галактики, в частности Галактика, которой принадлежит Солнечная система (приложение 3). Логарифмическая спираль знаменита не только тем, что её образы достаточно широко встречаются в природе, но и своими удивительными свойствами.
Неизменяемость спирали при преобразовании подобия является основой любопытного явления, состоящего в том, что если лист бумаги с изображенной на нем логарифмической спиралью быстро поворачивать вокруг полюса по ходу часовой стрелки или против хода часовой стрелки, то можно наблюдать кажущее увеличение или уменьшение спирали.
В технике часто применяют вращающиеся ножи. Сила, с которой они давят на разрезаемый материал, зависит от угла резанья, т.е. угла между лезвием ножа и направлением скорости вращения. Для постоянного давления нужно, чтобы угол резания сохранял постоянное значение, а это будет в том случае, если лезвия ножей очерчены по дуге логарифмической спирали. Величина угла резания зависит от  обрабатываемого материала.
Логарифмическая спираль – это замечательная кривая, имеющая  много интересных свойств, но примеры логарифмической функции в природе на этом не ограничиваются. Поэтому рассмотрим еще несколько интересных фактов.
Известно, что астрономы распределяют звезды по степеням видимой яркости на светила первой величины, второй величины, третьей и т.д. Последовательные звездные величины воспринимаются глазом как члены арифметической прогрессии. Но физическая яркость их изменяется по иному закону: объективные яркости составляют геометрическую прогрессию со знаменателем 2,5. Получается, что «величина» звезды представляет собой не что иное, как логарифм её физической яркости. Оценивая видимую яркость звёзд, астроном оперирует с таблицей логарифмов по основанию 2,5.
Практическая аналогичная картина получается при оценивании громкости шума. Единицей громкости служит «бел» (в честь изобретателя А.Г.Бела), практически – его десятая доля, «децибел». Последовательные степени громкости 10 децибел, 20 децибел и т.д. составляют для нашего слуха арифметическую прогрессию. Физическая же «сила» этих шумов (точнее – энергия) составляет геометрическую прогрессию со знаменателем 10. Громкость шума, выраженная в белах, равна десятичному логарифму его физической силы. Рассмотрим этот вопрос подробнее. Если мы будем слушать звуки различных частот, но одинаковой силы, то они покажутся нам отличающимися по громкости. То есть наше ухо с разной чувствительностью воспринимает звуки различной частоты. Если увеличивать силу какого-нибудь звука в 2,3,4 раза, то наше звуковое ощущение (громкость звука) во столько же раз не увеличивается. Тихий шелест листьев оценивается в 1 бел, громкая разговорная речь – в 6,5 бела, рычание льва – в 807 бела. Но разности громкостей в 1 бел отвечает отношение силы шумов равное 10.
По силе звука разговорная речь превышает шелест листьев в 106,5-1 = 105,5 » 31600 раз, львиное рычание в 108,7-6,5 =102,2» 158 раз.
При оценке видимой яркости светил и при  измерении громкости шума, мы имеем дело с логарифмической зависимостью между величиной ощущения и порождающего его раздражения. Оказывается, что оба эти явления – следствия общего психофизического закона Вебера-Фехнера, согласно которому ощущение изменяется пропорционально логарифму раздражения. Как видно, логарифмы вторгаются и в область психологии.
Теперь рассмотрим еще один интереснейший пример о связи логарифмов и музыки. Нажимая на клавиши современного рояля, мы, можно сказать, играем на логарифмах Действительно, так называемые «ступени» темперированной хроматической гаммы не расставлены на равных расстояниях ни по отношению к числу колебаний, ни по отношению к длинам волн соответствующих звуков, а представляют собой логарифмы этих величин. И основание этих логарифмов равно 2.
  

История возникновения и развития логарифмов



                             Изобретение логарифмов, сократив
                            работу астронома, продлило ему жизнь.                                                                                                                     П.С.Лаплас

Испокон веков люди пытались упростить вычисления: составляли таблицы, вводили приближенные формулы, облегчающие расчеты, пытались заменить сложные операции умножения и деления более простыми – сложением и вычитанием.

Логарифмы также были созданы в 16 веке как средство для упрощения вычислений. В их основе лежит очень простая идея, знакомство с которой приписывается еще Архимеду.
Рассмотрим две прогрессии, арифметическую ) и геометрическую при b1 = 2, q = 2
     1       2       3         4          5         6          7                8                 9          10      (*)
   2       4       8       16        32       64       128           256             512         1024
Оказывается, эти строки позволяют упрощать вычисления. Действительно: если мы хотим перемножить два числа нижнего ряда, например, 16 и 32 , нам достаточно сложить соответствующие числа верхнего ряда: над числом 16 стоит 4, над числом 32 стоит 5; сложим числа 4 и 5 (будет 9) и опустимся вниз – под 9 стоит 512. Значит, 16   32 = 512. (Аналогично выполняется и деление, только числа первого ряда нужно вычитать).
Но это еще не все. С помощью указанных двух строк (*) действие возведения в степень заменяется умножением, а извлечение корня – делением.
Таким образом, каждый раз, когда мы хотим выполнить действия с числами нижнего ряда, мы выполняем более  простые операции с числами верхнего ряда. А что представляют собой числа верхнего ряда? Да ведь это же показатели выписанных в нижнем ряду степеней с основанием 2. Действительно,  снизу у нас стоят степени  21, 22, 23, 24 и т. д., а вверху только показатели этих степеней 1, 2, 3, 4 и т.д. Так вот показатели степеней и называются логарифмами.
Идея Архимеда получила развитие не сразу. Пока математикам было достаточно уже имевшихся средств вычислений, они проходили мимо этого удивительного свойства прогрессий. Но в эпоху Возрождения ситуация изменилась. Крупнейшие европейские державы стремились к владычеству на море. Для дальних плаваний, для определения положения морских судов по звездам и по солнцу необходимо было всё более развивать астрономию, а значит, и тригонометрию.  И, в частности, понадобились более совершенные тригонометрические таблицы. В связи с нарастающими запросами практики продолжали совершенствоваться астрономические инструменты, увеличивалась точность наблюдений, исследовались планетные движения. Обработка полученных данных требовала колоссальных расчетов, и, следовательно, стали необходимы новые средства упрощения вычислений. Такими средствами в 15 – 16 веках явились в первую очередь логарифмы и десятичные дроби.
Рассмотрим, как развивалась дальше идея логарифмов.
Мы можем предугадать первые шаги по усовершенствованию рассматриваемых строк:
1.     Числа верхнего ряда целесообразно продолжить в отрицательную сторону, т.е. ввести понятие о степени с нулевым и отрицательным показателем.
2.     Нужно уплотнить числа нижнего ряда, чтобы можно было применить идею об упрощении вычислений вообще к любым числам (для этого, например, можно взять в нижнем ряду вместо степеней с основанием 2 степени с основанием , близким к 1).
3.     Необходимо также уплотнить числа верхнего ряда.
Теперь будет интересно узнать, что мы не ошиблись  в наших предположениях. Обратимся к истории математики.
Прежде всего, теоретическая подготовка учения о логарифмах тесно связана с развитием понятия степени. Степень с отрицательным показателем встречается уже в трактате «Арифметика» древнегреческого математика Диофанта (ок. 3 в.) из Александрии. Им, а возможно и его предшественниками, были введены особые обозначения для некоторых положительных и отрицательных степеней. С течением времени символика совершенствовалась, и эта идея получила дальнейшее развитие. Так, много позже, французский врач и математик Никола Шюке (ок. 1445 – 1500) в своем трактате «Наука о числе» более полно рассмотрел нулевые и отрицательные показатели степени. Ещё раньше, в 14 веке, епископ города Лизье в Нормандии Николай Орем (ок. 1323 – 1382), исходя из соображений о возможности вставлять в арифметическом ряду между натуральными числами дробные (п.3), высказал мысль о том, как надо выражать в рядах (* ) соответствующие величины геометрического ряда. Таким образом, он пришел к степеням с дробным показателем.
Особое внимание сопоставлению арифметического и геометрического рядов уделял Михаэль Штифель (1487 – 1567). Подобно Шюке и Орему Штифель пришел к мысли о дробных показателях. Кроме того, сопоставляя ряд натуральных чисел, начинающихся единицей, он отмечал, что соответствующий единице показатель есть нуль, т.е. что a0 = 1. Числам верхнего ряда Штифель дал употребительное и поныне название «показателей» (exponent).
Но кто же стал автором первых таблиц логарифмов, позволяющих свести более сложные действия к более простым?
В истории науки иногда наступают моменты, когда необходимость некоторого открытия осознается многими, а его основная идея как бы витает в воздухе. В таких случаях к открытию приходят не один, а сразу несколько ученых. Так случилось и в истории логарифмов. Однако создатели первых логарифмических таблиц подходили к изобретению нового удобного средства для упрощения вычислений по-разному. Те соображения, которые мы выдвинули чуть раньше, пытаясь предугадать, каким путем пойдет создатель логарифмов, пожалуй, больше всего подходят к Бюрги.
Таблицы Иоста Бюрги были ещё очень несовершенны, правила работы с ними достаточно трудоемки, а многие результаты приходилось находить с помощью дополнительных приближенных приемов вычислений.
Бюрги очень медлил с опубликованием своих таблиц. Они вышли в свет лишь в 1620 году под названием «Таблицы арифметической и геометрической прогрессий, вместе с основательным наставлением, как их нужно понимать и с пользой применять во всяческих вычислениях». Но значительного распространения эти таблицы не получили, так как к моменту опубликования таблиц Бюрги ученому миру уже семь лет были известны другие таблицы, которые составил шотландский барон Джон Непер (1550 – 1617).
При создании таблиц логарифмов Непер исходил из идеи, которую мы сегодня оцениванием как наиболее прогрессивную и оригинальную.  Он близко подошел к понятию логарифмической зависимости. Подход Непера позволил определить логарифм любого положительного числа, но сделано это было не скоро. Члены геометрической прогрессии Непер назвал числами, а члены арифметической прогрессии – их логарифмами (от греческих слов «логос» - отношение,  «арифмос» - число). Таким образом, книга первых таблиц логарифмов вышла с вполне современным названием «Описание удивительной таблицы логарифмов» (1614).
Интересно, что наряду с вышеуказанными таблицами существовали ещё одни таблицы, которыми можно было пользоваться как средством для упрощения вычислений. Однако их автор не заметил этого, подразумевая совсем иное назначение своих таблиц. Речь идет о таблицах процентов шотландского ученого и инженера Симона Стевина (1548 – 1620).
Вспомним, как выводится формула сложных процентов. Пусть сначала на нашем счету лежит некоторая сумма, которую мы положили в банк под p% годовых. Сумма лежит в банке целый год, а в конце на неё начисляются проценты – дополнительные деньги, которые банк платит за то, что целый год пользовался суммой S0. Таким образом, сумма S0 принесет за год доход в размере p% от неё, т.е.  . Если мы деньги не снимем, то весь следующий год на нашем счету будет лежать уже выросшая сумма:
S1 = начальная сумма + доход = S0 +    =  S0 (1 +   ).
В конце второго года на эту сумму также будут начислены проценты. Доход за второй год составит p% от суммы S1, т.е.   . После начисления процентов сумма на вкладе станет равной S2 = S1  12pS1100  = S0 (1 + 12p100  ) (1 + 12p100   ) =
= S0 (1 + 12p100>  )2. Аналогично рассуждая, мы придем к выводу, что в конце n –ого года сумма на вкладе станет равнойSn = S0 (1 + 12p100>  )n. Это и есть формула сложных процентов. Если же теперь выписать в две строки данные о том, какой год лежит сумма и как она вырастает к концу этого периода, то получится арифметическая и геометрическая прогрессии.

Пример.         Мы положим на счет в банк 100 рублей под 10% годовых.
Через 1 год сумма будет равна (составит) 100 + 10% ? 100 = 110 рублей
Через 2 года сумма составит 110 +  10% ? 110 = 121 рубль
Через три  года  сумма будет равна 121 + 10% ? 121 = 131,1 рубля  (и т.д.)
      1          2           3         …                   n
    110     121     131,1      …         100 (1 +  10 % )n
Продвинувшись ещё немного в изучении истории логарифма, мы видим, что в один смысловой блок собираются такие понятия, как арифметическая и геометрическая прогрессии, степень, проценты, формула сложных процентов и логарифмы.